Critical role of C-terminal residues of the Alzheimer's associated β-amyloid protein in mediating antiviral activity and modulating viral and bacterial interactions with neutrophils

نویسندگان

  • Mitchell R White
  • Ruth Kandel
  • I-Ni Hsieh
  • Xavier De Luna
  • Kevan L Hartshorn
چکیده

Recent studies have shown that the Alzheimer's associated β-amyloid protein (βA) can inhibit growth of bacteria, fungi and viruses. We reported that the 42 amino acid βA protein inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV) in vitro and modulates activation of neutrophils and monocytes exposed IAV. We here show that fragments composed of the N and C terminal domain of βA42, including βA22-42 and the 8 amino acid βA35-42, retain viral neutralizing and viral aggregating activity, whereas fragments lacking the C-terminal amino acids 41 and 42 (e.g. βA1-40, βA1-34, βA1-28, βA22-40 or βA33-40) have markedly diminished activities on these assays. βA22-42 also increased viral uptake, and virus induced respiratory burst responses, by human neutrophils, while peptides lacking residues 41 and 42 did not. Similar results were obtained with regard to bacterial aggregation, or promotion of bacterial uptake by neutrophils. Published structural studies have shown that βA1-42 has a greater propensity to form neurotoxic oligomers than βA1-40 due to a molecular interaction between Met35 and Ala42. Our findings suggest that there is a relationship between neurotoxic and antimicrobial activities of βA1-42. Truncated peptides containing the last 8 C-terminal amino acids of βA1-42 retain antimicrobial and opsonizing activities likely resulting from their ability to induce viral or bacterial aggregation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Carvacrol and Thymol Attenuate Cytotoxicity Induced by Amyloid β25-35 Via Activating Protein Kinase C and Inhibiting Oxidative Stress in PC12 Cells

Background: Our previous findings indicated that carvacrol and thymol alleviate cognitive impairments caused by Aβ in rodent models of Alzheimer's disease (AD). In this study, the neuroprotective effects of carvacrol and thymol against Aβ25-35-induced cytotoxicity were evaluated, and the potential mechanisms were determined. Methods: PC12 cells were pretreated with Aβ25-35 for 2 h, followed by ...

متن کامل

The effect of Carbon nanotube on the most effective peptide in Alzheimer's disease in the presence of Dimethyl Sulfoxide: In Silico approach

Due to the non-polar nature of carbon nanotubes, their use in aqueous environments is limited. Therefore, auxiliary solvents such as dimethyl sulfoxide are used to study the interactions between the amyloid-β peptide and carbon nanotubes. In this work, the interaction of Aβ (1-42), the most effective peptide in the development of Alzheimer's disease, with the carbon nanotube was performed using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018